

Norwegian University of Science and Technology

Do we really need Digital Twins?: Investigating stakeholders' need for a new transport planning tool

Zakiya A Pramestri, Irene Hofmann, Zelalem B Biramo, Trude Tørset

Sustainable transport planning & Digital Twin

An efficient, environmentally friendly and safe transport system throughout the country in 2050

Research Questions

- 1. What are the **stakeholder's needs** to improve planning, process towards sustainable transportation system?
- 2. To which extent **digital twin can fulfil the need** of transportation planning improvement?

We did **interview** to stakeholders in transport planning & **document analysis**

Role	Institution			
 Transport planner Transport engineer Urban planner Transit planner Strategic advisor (urban planning & transport) 	 County & Municipality Road Authority Transit operators 			

Flow of Interview

- Understanding current planning process
- · Needs of data, model, tools
- Future transport planning tools
 - o Required quality & functionality
 - o Future mobility system

Stakeholder's need on Data, Model & Tool

Data Collection	Data Integration & Processing	Formalization to Acquire Data	
 Bike & pedestrian Traffic count data in city level Queuing & delay Parking Quality travel survey 	 PT data Travel survey data (timely processing) Automatic update 	 Micromobility Car sharing data Toll payment system Freight data 	

ata

	Interaction between different models • Interaction between : • LUTI, • Demand model • Operational model • Seamless flow of output		Network resolution		Development of methods	
Model			 Spatial & temporally more granular Consider intervention → level for impact measurement 		 Trip chaining & muti-modal Active mobility Freight Involve element of intervention Parking Lane priority Bike lane 	
<u>[ool</u>	Data & Information coordination & collaboration	Dynamic visualization		User-frie Scenar buildin	ndly io g	Tools & Models Integration

Digital twin can be **useful for**:

- Automate data collection & integration
- Interaction between different models & tools
- Enhance visualization

When utilizing Digital Twin, we should be **aware of:**

- Risk & cost → how worth is it for strategic planning? How is the **best-use** of it?
- More fundamental study on model development for intervention towards sustainable transport system, before feeding it to DT
- Functionality & usability → governance & user' competence

Refining the concept of DT before developing "A Usable Digital (Twin)" is important