Designing Realistic Digital Twins of Urban Environment

Procedural Generation of 3D Environments

Sachin V., Florian W., Gabriel K., Frank L.

Norwegian University of Science and Technology, Norway

Neural Radiance Field (NeRF)

- A machine learning technique that generates 3D representation of complex object and scenes from some sparse set of input images [1]
- The input is a continuous 5D coordinate (location (x, y, z), angle (θ, ϕ))
- The output is the volume density and view-dependent emitted radiance
- Use classic volume rendering to project the color and densities into an image

Figure: Architecture

Figure. Block Diagram

Figure: Novel View Synthesis

NeRF in Unconstrained Outdoor Environment

- Complexity of Outdoor Environment
- Computational Overheads
- Restricted Viewpoints
- Lightning Variability

Figure: Cameras over Car

CARLA Simulator

- Open-source simulator for autonomous driving research [5].
- Set an ego vehicle mounting multiple cameras for capturing data.

Dataset: NAPLab Real-world Data

•A real-world dataset captured with an autonomous vehicle of the NTNU Autonomous Perception Laboratory (NAPLab) [6].

Use Case

Conclusions and Future Works

- •We still working in progress to finetune our environment
- •Incorporate multi-modal data sources to improve accuracy and realism.
- •We will benchmark our dataset of our own city.

End