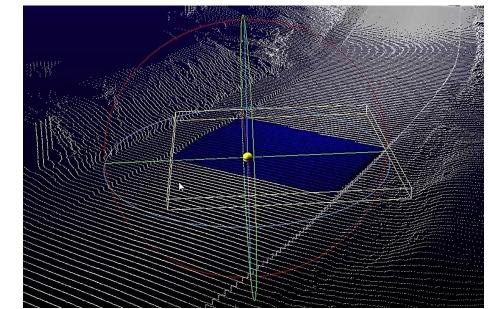

Generation of semantic rich digital twin from 3D Lidar point clouds

Kristin Eggen Supervisor: Hongchao Fan

2024

- Created a point cloud dataset, using data from Trondheim, for training deep learning networks
- Created a method to improve performance of classification networks
- Paper under review



2025

Speed Bump Detection

- Autonomous vehicles need to detect speed bumps in order to reduce their speed
- There are a lot of speed bumps in Norway
- If the speed bumps are not properly marked, they can be difficult to detect using images and video
- Point clouds provide geometry information – speed bumps can be separated from the road surface based on elevation differences

2025

- Estimating Runoff Volume
 - Using point cloud data to estimate the runoff volume near curbs from sloped road surfaces
 - Can be used to ensure sufficient drainage to reduce risk of vehicles splashing pedestrians
- Road Damage Detection
 - Has been done using images and video, but not extensively researched using point cloud data
 - Compared to images, 3D LiDAR data are less affected by conditions such as weather and lighting
 - Point cloud data can be used alongside images to improve performance of applications
 - Example potholes: 2D images can be used to detect candidate potholes and 3D data can be used to further analyse depth and size

